

Course Outline

Instructors

- Ekram Hossain, P.Eng.
E1-552 EITC
(204) 474-8908
Ekram.Hossain@umanitoba.ca

Office Hours

- By appointment only

Teaching Assistant

- Magdy Nasr
nasrm1@myumanitoba.ca
- Angelo Vera-Rivera
angelo.verarivera@umanitoba.ca

Contact Hours

- 5 credit hours
- Lectures: 3 hours per week
- Laboratories: 3 hours x 10 weeks

Prerequisites:

- ENG 1450 Introduction to Electrical and Computer Engineering

Traditional Territories Acknowledgement

The University of Manitoba campuses and research spaces are located on original lands of Anishinaabeg, Ininiwak, Anisiniinewuk, Dakota Oyate, Dene and Inuit, and on the National Homeland of the Red River Métis.

UM recognizes that the Treaties signed on these lands are a lifelong, enduring relationship, and we are dedicated to upholding their spirit and intent. We acknowledge the harms and mistakes of the past and the present. With this understanding, we commit to supporting Indigenous excellence through active Reconciliation, meaningful change, and the creation of an environment where everyone can thrive. Our collaboration with Indigenous communities is grounded in respect and reciprocity and this guides how we move forward as an institution.

ECE 2220 – Digital Logic Systems

Winter 2026

Course Objectives

Boolean algebra and logic primitives, simplification of Boolean functions, number systems and codes, digital encoder, decoder, multiplexer, de-multiplexer, Boolean based adding, subtraction, multiplication and different primitive elements of the CPU. Introduction to hardware description languages such as Verilog. Analysis and design of synchronous sequential circuits; applications to computation, measurement, and control.

Course Content

The following topics will be covered:

- Digital systems: digital computers and digital systems; binary, octal and hexadecimal number systems; complements; signed binary numbers; decimal and binary codes; introduction to binary logic.
- Boolean algebra: basic definitions, theorems, and properties of Boolean algebra; Boolean functions; standard forms of Boolean functions; logic operations.
- Introduction to Verilog (Verilog will be used throughout the course).
- Simplification of Boolean functions: Karnaugh map method, don't care conditions, NAND, and NOR implementation, and exclusive-OR function.
- Combinational circuits: analysis and design procedures; digital encoder, decoder, multiplexer and de-multiplexer and their application to realize a Boolean function; adders, subtractors, multilevel NAND/NOR circuits and code conversion.
- Analysis of synchronous sequential circuits: flip-flops; analysis of clocked sequential circuits; state reduction and assignment.
- Design of sequential circuits: flip-flop excitation tables, design procedures, counter designs, simplification of finite state machines.
- Registers, counters, and memory devices: shift registers, ripple counters, synchronous counters, and timing sequences.
- Finite State Machines (FSM): FSM charts, timing issues; data and control aspects of FSM design procedures.

Textbook

Fundamentals of Digital Logic with Verilog Design, Stephen Brown and Zvonko Vranesic, McGraw-Hill, 3rd edition, 2009.

Learning Outcomes

1. Interpret, convert, and represent different number systems and binary arithmetic.
2. Manipulate and examine Boolean algebra, logic operations, Boolean functions and their simplifications.
3. Design and analyze combinational logic circuits.
4. Design and analyze sequential logic circuits.
5. Represent a logic circuit design problem using a finite-state machines (FSM).

Important Dates

- Term Test**
February 25th, 2026
6:00PM – 7:30PM
E2–105 EITC
- Voluntary Withdrawal Deadline**
March 19th, 2026
- Louis Riel Day**
February 16th, 2026
No classes or examinations
- Spring Break**
February 17th – 20th, 2026
No classes or examinations
- Good Friday**
April 3rd, 2026
No classes or examinations

Expected Competency Levels

Outcome	KB	PA	IN	DE	ET	IT	CS	PR	IE	EE	EP	LL
1	D	D	D	D	I		I		I			D
2	D	A	D	D	D	D	D		D			D
3	D	A	D	D	D	D	D		D			D
4	D	A	D	D	D	D	D		D			D
5	D	D	D	D	D	D	D		D			D

Evaluation

The final course grade is determined by the student's performance on a design project, in laboratories, and on examinations. Students must complete all the laboratories, and receive a passing grade on the final exam, in order to be eligible to pass the course.

Component	Value (%)	Method of Feedback	Learning Outcomes Evaluated
Laboratories	16	F, S	1, 2, 3, 4, 5
Term Project	5	F, S	1, 2, 3, 4, 5
Assignments	4	F, S	1, 2, 3, 4, 5
Term Test	25	F, S	1, 2, 3
Final Examination	50	S	1, 2, 3, 4, 5

* Method of Feedback: F - Formative (written comments and/or oral discussion), S - summative (numerical grade)

CEAB Graduate Attributes Assessed

KB.3 – Recalls and defines, and/or comprehends and applies information, first principles, and concept in fundamental engineering science.

DE.3 – Develops/implements possible solutions to an open-ended design problem, leading to an appropriate recommendation.

Student Absences

Attendance in lectures, tutorials, and laboratories is mandatory. For short-term absences due to illness or other extenuating circumstances of 120 hours (5 days) or less, students are required to complete a *Self-Declaration Form for Brief or Temporary Absence* available on the University website. This form must be submitted to the course instructor within 48 hours of the absence. (No additional documentation is required.)

Note that students are responsible to complete any missed work and must consult with the instructor to make appropriate arrangements.

For absences longer than 120 hours, students must contact the instructor and ECE Undergraduate Advisor, Tammy Holowachuk (Tammy.Holowachuk@umanitoba.ca) for further instructions.

Deferred Final Examinations

Students who miss the regular scheduled writing of a final examination, for valid medical or compassionate reasons, may be given the opportunity to write a deferred examination, subject to approval by the Associate Dean (Undergraduate). All requests for a deferred examination must be made within 48 hours of the missed examination, and must follow the procedure described on the Faculty website, without exception. Course instructors do not have the discretion to grant deferred final examinations.
(<https://umanitoba.ca/engineering/student-experience#engineering-student-policies>)

Accreditation Details

Accreditation Units

- Mathematics: 0%
- Natural Science: 0%
- Complementary Studies: 0%
- Engineering Science: 60%
- Engineering Design: 40%

Graduate Attributes

KB: A knowledge base for engineering
 PA: Problem analysis
 IN: Investigation
 DE: Design
 ET: Use of engineering tools
 IT: Individual and team work
 CS: Communication skills
 PR: Professionalism
 IE: Impact of engineering on society/ environment
 EE: Ethics and equity
 EP: Economics and project management
 LL: Life-long learning

Competency Levels

I - Introduced (Introductory)
 D - Developed (Intermediate)
 A - Applied (Advanced)

Grading Scale

Letter	Mark
A+	95–100
A	85–94
B+	80–84
B	70–79
C+	65–69
C	55–64
D	45–54
F	< 45

Note: These boundaries represent a guide for the instructor and class alike. Provided that no individual student is disadvantaged, the instructor may vary any of these boundaries to ensure consistency of grading from year-to-year.

Academic Integrity

Students are expected to conduct themselves in accordance with the highest ethical standards of the Profession of Engineering and evince academic integrity in all their pursuits and activities at the university. As such, in accordance with the *General Academic Regulations on Academic Integrity* , students are reminded that plagiarism or any other form of cheating in examinations, term tests, assignments, projects, or laboratory reports is subject to serious academic penalty (e.g. suspension or expulsion from the faculty or university). This includes the unauthorized use of AI when preparing course deliverables. A student found guilty of contributing to cheating by another student is also subject to serious academic penalty. Integrity also applies to respecting copyrighted course content, which should not be distributed without the creator's permission. Uploading content for the purpose of transcription or other AI-enabled features is commonly a violation of the copyright holder's rights.

Copyright Notice

All materials provided in this course are copyright and are provided under the fair dealing provision of the *Canadian Copyright Act*. This material may not be redistributed in any manner without the express written permission of the relevant copyright holder. This includes recording class sessions for personal use and/or uploading any course materials to a website.

Requirements and Regulations

- Attendance at lectures and laboratories is essential for successful completion of this course. Students must satisfy each evaluation component in the course to receive a passing final grade.
- It is the responsibility of each student to contact the instructor in a timely manner if they are uncertain about their standing in the course and about their potential for receiving a failing grade. Students should also familiarize themselves with the University's *General Academic Regulations* , as well as the Price Faculty of Engineering *Academic Regulations* dealing with incomplete term work, deferred examinations, attendance and withdrawal.
- No programmable devices or systems (such as calculators, PDAs, smart phones, smart watches, wireless communication or data storage devices) are allowed in examinations unless approved by the course instructor.
- Students should be aware that they have access to an extensive range of resources and support organizations. These include Academic Resources, Counselling, Advocacy and Accessibility Offices as well as documentation of key University policies e.g. Academic Integrity, Respectful Behaviour, Examinations and related matters.

 [Supplemental Resources](#)

Retention of Student Work

Students are advised that copies of their work submitted in completing course requirements (i.e. assignments, laboratory reports, project reports, test papers, examination papers, etc.) may be retained by the instructor and/or the department for the purpose of student assessment and grading, and to support the ongoing accreditation of each Engineering program. This material shall be handled in accordance with the University's *Intellectual Property Policy* and the protection of privacy provisions of *The Freedom of Information and Protection of Privacy Act (Manitoba)*. Students who do not wish to have their work retained must inform the Head of Department, in writing, at their earliest opportunity.