

University | Price Faculty of Engineering

Department of Electrical and Computer Engineering

Course Outline

Instructor

• Blair Yoshida, P.Eng. E3–411 EITC Blair.Yoshida@umanitoba.ca

Office Hours

· By appointment

Teaching Assistant

 Prashanth Atputhakumar atputhap@myumanitoba.ca

Contact Hours

- 4 credit hours
- Lectures:
- 3 hours x 13 weeks = 39 hours • Laboratories:
- 3 hours x 5 weeks = 15 hours

Prerequisites:

ECE 4150 Control Systems

Traditional Territories Acknowledgement

The University of Manitoba campuses and the Department of Electrical and Computer Engineering are located on original lands of the Anishinaabeg, Cree, Ojibwe-Cree, Dakota, and Dene peoples, and on the homeland of the Red River Métis.

We respect the Treaties that were made on these territories, we acknowledge the harms and mistakes of the past, and we dedicate ourselves to move forward in partnership with Indigenous communities in a spirit of Reconciliation and collaboration.

ECE 4160 - Control Engineering

Winter 2024

Course Objectives

Design of control systems by frequency domain and root locus method; state equations; introduction to nonlinear analysis.

This course provides a continuation of material presented in Control Systems, and introduces non-LTI systems, and an introduction to the analysis and design of computer-controlled systems. This course not only focuses on mathematical concepts in digital control, including transfer functions, state space models, Z-transform, and digital controller design, but also provides students with hands-on experience in analysis and design of digital control systems using simulation software. After this course, students are expected to know how to analyze the performance of digital control systems and design feedback controllers to meet required system performance specifications.

Course Content

The following topics will be covered:

- Introduction to transfer functions and state-space system representation.
- Introduction to non LTI systems.
- Introduction to digital control systems.
- Discrete systems analysis..
- Sampled data systems.
- Discrete system analysis using z-transform and inverse z-transform.
- Discrete equivalents to continuous systems.
- Design using transform techniques.
- Effects of sampling and quantization.

Textbook

Modern Control Systems, 14th Edition, R. C. Dorf, and R. H. Bishop, Pearson, 2022.

Digital Control of Dynamic Systems, 3th Edition, G. F. Franklin, J. D. Powell, and M. Workman, Ellis-Kagel, 1998.

Learning Outcomes

- 1. Ability to implement a feedback control system based on a mathematical description.
- 2. Ability to analyze a digital control system.
- 3. Ability to design, for implementation, specific control systems.

Expected Competency Levels

Outcome	КВ	PA	IN	DE	ET	ІТ	cs	PR	IE	EE	EP	LL
1	D	D	D	D								
2	А	А	D	Ι	D							
3	D	D	D	А								

Important Dates

- Term Test Thursday, February 29th, 2024 6:00PM-8:00PM
- Voluntary Withdrawal Deadline March 20th, 2024
- Louis Riel Day February 19th, 2024 No classes or examinations
- Spring Break February 20th – 23rd, 2024 No classes or examinations
- Good Friday March 29th, 2024 No classes or examinations

Accreditation Details

Accreditation Units

- Mathematics: 0%
- Natural Science: 0%
- Complementary Studies: 0%
- Engineering Science: 70%
- Engineering Design: 30%

Graduate Attributes

KB: A knowledge base for engineering

- PA: Problem analysis
- IN: Investigation
- DE: Design
- ET: Use of engineering tools
- IT: Individual and team work
- CS: Communication skills
- PR: Professionalism
- IE: Impact of engineering on society/ environment
- EE: Ethics and equity
- EP: Economics and project management
- LL: Life-long learning

Competency Levels

- I Introduced (Introductory)
- D Developed (Intermediate)
- A Applied (Advanced)

Evaluation

The final course grade will be determined from a student's performance in laboratories, assignments, and on examinations. Programmable calculators are not allowed in the mid-term and final examination. Students must receive a minimum of 50% on the final examination and must complete all the laboratories in order to be eligible to receive a passing grade.

Component	Value (%)	Method of Feedback	Learning Outcomes Evaluated
Quizzes	10	F, S	1, 2, 3
Assignments	5	F, S	1, 2, 3
Laboratories	10	F, S	1, 2, 3
Term Test	25	F, S	1, 2, 3
Final Examination	50	S	1, 2, 3

* Method of Feedback: F - Formative (written comments and/or oral discussion), S - summative (numerical grade)

CEAB Graduate Attributes Assessed

- PA.3 Analyzes and solves complex engineering problems.
- DE.3 Develops/implements possible solutions to an open-ended design problem, leading to an appropriate recommendation.

Student Absences

Attendance in lectures, tutorials, and laboratories is mandatory. For short-term absences due to illness or other extenuating circumstances of 120 hours (5 days) or less, students are required to complete a *Self-Declaration Form for Brief or Temporary Absence* available on the University website. This form must be submitted to the course instructor within 48 hours of the absence. (No additional documentation is required.)

Note that students are responsible to complete any missed work and must consult with the instructor to make appropriate arrangements.

For absences longer than 120 hours, students must contact the instructor and ECE Undergraduate Advisor, Tammy Holowachuk (Tammy.Holowachuk@umanitoba.ca) for further instructions.

Deferred Final Examinations

Students who miss the regular scheduled writing of a final examination, for valid medical or compassionate reasons, may be given the opportunity to write a deferred examination, subject to approval by the Associate Dean (Undergraduate). All requests for a deferred examination must be made within 48 hours of the missed examination, and must follow the procedure described on the Faculty website, without exception. Course instructors do not have the discretion to grant deferred final examinations.

(https://umanitoba.ca/engineering/student-experience#engineering-student-policies)

Academic Integrity

Students are expected to conduct themselves in accordance with the highest ethical standards of the Profession of Engineering and evince academic integrity in all their pursuits and activities at the university. As such, in accordance with the *General Academic Regulations* on *Academic Integrity*, students are reminded that plagiarism or any other form of cheating in examinations, term tests, assignments, projects, or laboratory reports is subject to serious academic penalty (e.g. suspension or expulsion from the faculty or university). A student found guilty of contributing to cheating by another student is also subject to serious academic penalty.

Copyright Notice

All materials provided in this course are copyright and are provided under the fair dealing provision of the Canadian Copyright Act. This material may not be redistributed in any manner without the express written permission of the relevant copyright holder.

Grading Scale

Letter	Mark
A+	95-100
А	85–94
B+	80-84
В	70–79
C+	65–69
С	55-64
D	45–54
F	< 45

Note: These boundaries represent a guide for the instructor and class alike. Provided that no individual student is disadvantaged, the instructor may vary any of these boundaries to ensure consistency of grading from year-toyear.

Retention of Student Work

Students are advised that copies of their work submitted in completing course requirements (i.e. assignments, laboratory reports, project reports, test papers, examination papers, etc.) may be retained by the instructor and/or the department for the purpose of student assessment and grading, and to support the ongoing accreditation of each Engineering program. This material shall be handled in accordance with the University's *Intellectual Property Policy* and the protection of privacy provisions of *The Freedom of Information and Protection of Privacy Act (Manitoba)*. Students who do not wish to have their work retained must inform the Head of Department, in writing, at their earliest opportunity.

Requirements/Regulations

- Attendance at lectures and laboratories is essential for successful completion of this course. Students must satisfy each evaluation component in the course to receive a passing final grade.
- It is the responsibility of each student to contact the instructor in a timely manner if he or she is uncertain about his or her standing in the course and about his or her potential for receiving a failing grade. Students should also familiarize themselves with the University's *General Academic Regulations*, as well as Section 3 of the Faculty of Engineering *Academic Regulations* dealing with incomplete term work, deferred examinations, attendance and withdrawal.
- No programmable devices or systems (such as calculators, PDAs, iPods, iPads, cell phones, smart watches, wireless communication or data storage devices) are allowed in examinations unless approved by the course instructor.
- Students should be aware that they have access to an extensive range of resources and support organizations. These include Academic Resources, Counselling, Advocacy and Accessibility Offices as well as documentation of key University policies e.g. Academic Integrity, Respectful Behaviour, Examinations and related matters.

Supplemental Resources