Risk analysis of annuity conversion options in a stochastic mortality environment

Joint work with Alexander Kling and Jochen Russ

Katja Schilling
August 3, 2012

Research Training Group 1100
Introduction

Model framework

Numerical results
Introduction

Model framework

Numerical results
Unit-linked deferred annuities

▶ Premiums are accumulated in a fund
▶ At retirement, the policyholder has the choice between
 ▶ account value as a lump sum
 ▶ converting the account value into an annuity at then prevailing rates
▶ Resulting annuity payment highly depends on
 ▶ fund value
 ▶ interest rate expectations
 ▶ mortality expectations
Unit-linked deferred annuities

- Premiums are accumulated in a fund
- At retirement, the policyholder has the choice between
 - account value as a lump sum
 - converting the account value into an annuity at then prevailing rates
- Resulting annuity payment highly depends on
 - fund value
 - interest rate expectations
 - mortality expectations

Annuity conversion options

- Insurance companies add guarantees to pure unit-linked deferred annuities, e.g.
 - Guaranteed annuity options (GAOs)
 - Guaranteed minimum income benefits (GMIBs)
- Such options can become unexpectedly valuable (cf. UK)
Literature

- **Pricing GAOs under deterministic mortality**: e.g.
 - Boyle and Hardy (2003), Ballotta and Haberman (2003), Van Haastrecht et al. (2010)

- **Pricing GAOs under stochastic mortality**: e.g.

- **Pricing GMIBs**: e.g.
 - Bauer et al. (2008), Marshall et al. (2010), Bacinello et al. (2011)
Literature

- Pricing GAOs under deterministic mortality: e.g.
 - Boyle and Hardy (2003), Ballotta and Haberman (2003), Van Haastrecht et al. (2010)
- Pricing GAOs under stochastic mortality: e.g.
- Pricing GMIBs: e.g.
 - Bauer et al. (2008), Marshall et al. (2010), Bacinello et al. (2011)

Research objectives

1. What **risk** do annuity conversion options imply for the insurer?
2. How does the risk change with different **option types**?
3. Is it possible to reduce the risk by applying **risk management strategies**?
4. What risk (**fund, interest rate or mortality risk**) dominates the total risk?
Notation

- 0 to T: deferment period/retirement date
- x: policyholder’s age at inception of the contract ($t = 0$)
- τ_x: remaining lifetime
- P_0: single premium
- A_t: account value
- a_T: value of an immediate annuity with unit amount per year
Option types

- **Guaranteed annuity option (GAO)**
 - certain minimum conversion rate \(g \)
 - for converting the account value into a lifelong annuity at time \(T \)
 - \(g \): annual annuity per unit account value at time \(T \)

 \[
 V_T^{GAO} = 1 \{ \tau_x > T \} \max \{ g A_T a_T - A_T, 0 \}
 \]

- **GAO with limit**

- **Guaranteed minimum income benefit (GMIB)**
Option types

- **Guaranteed annuity option (GAO)**
 - certain minimum conversion rate g
 - for converting the account value into a lifelong annuity at time T
 - g: annual annuity per unit account value at time T

 \[
 V_T^{GAO} = 1_{\{\tau_x > T\}} g A_T \max \left\{ a_T - \frac{1}{g}, 0 \right\}
 \]

- **GAO with limit**

- **Guaranteed minimum income benefit (GMIB)**
Option types

- **Guaranteed annuity option (GAO)**
 - certain minimum conversion rate \(g \)
 - for converting the account value into a lifelong annuity at time \(T \)
 - \(g \): annual annuity per unit account value at time \(T \)

 \[
 V_{T}^{GAO} = \mathbb{1}_{\{\tau_x > T\}} gA_T \max \left\{ a_T - \frac{1}{g}, 0 \right\}
 \]

- **GAO with limit**
 - conversion rate \(g \) up to a maximum account value \(L \) (limit)

 \[
 V_{T}^{\text{Limit}} = \mathbb{1}_{\{\tau_x > T\}} g \min \{ A_T, L \} \max \left\{ a_T - \frac{1}{g}, 0 \right\}
 \]

- **Guaranteed minimum income benefit (GMIB)**
 - fixed minimum annuity amount \(M (= gG) \)

 \[
 V_{T}^{\text{GMIB}} = \mathbb{1}_{\{\tau_x > T\}} \max \{ gGa_T - A_T, 0 \}
 \]
Risk management strategies

<table>
<thead>
<tr>
<th>No hedging</th>
<th>Hedging</th>
</tr>
</thead>
<tbody>
<tr>
<td>No option fee</td>
<td>A</td>
</tr>
<tr>
<td>Option fee</td>
<td>B</td>
</tr>
</tbody>
</table>

- **Strategy B**
 - Option fee is invested in money market instruments

- **Strategy C**
 - Static hedge against the financial risk during the deferment period

- Assumption: Option fee = Hedging costs under strategy C
We analyze...

... the insurer’s loss distribution at time T

- for each combination of option type and risk management strategy
- by performing a Monte Carlo simulation

Modeled risk processes

- **Fund value**: Geometric Brownian motion
 \[
 dS(t) = (\lambda_S + r(t))S(t)dt + \sigma_S S(t)dW^S(t), \ S(0) > 0.
 \]

- **Short rate**: one-factor Cox-Ingersoll-Ross model
 \[
 dr(t) = \kappa(\theta - r(t))dt + \sigma_r \sqrt{r(t)}dW^r(t), \ r(0) > 0.
 \]

- **Mortality**: 6-factor forward model (cf. Bauer et al., 2008a)
 \[
 d\mu(t, T, x) = \alpha(t, T, x)dt + \sigma(t, T, x)dW^\mu(t), \ \mu(0, T, x) > 0.
 \]
Introduction

Model framework

Numerical results
Risk of GAOs seems to be quite low for the insurer
Insurer’s loss (base case) (2)

- GAO in-the-money ⇔ Limit in-the-money
Insurer’s loss (base case) (3)

- Risk of GMIBs seems to be much higher than risk of GAOs/Limits
Insurer’s loss (very low interest rates)

- Risk of GAOs is now the highest
- Limit becomes relevant
- Option values: 0.0157 (GAO_A), 0.0093 (Limit_A), 0.1386 (GMIB_A)
Insurer’s loss (base case) - Hedging strategies

- Strategy B: In many cases low profit, but risk is not significantly reduced
- Strategy C: Risk is significantly reduced
- Mortality is not negligible
Main risk driver

<table>
<thead>
<tr>
<th>Sensitivity with respect to...</th>
<th>Option most affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest rate level θ</td>
<td>GAO/Limit</td>
</tr>
<tr>
<td>Volatility of mortality σ</td>
<td>GAO/Limit</td>
</tr>
<tr>
<td>Fund volatility σ_S</td>
<td>GMIB</td>
</tr>
<tr>
<td>Fund risk premium λ_S</td>
<td>GMIB</td>
</tr>
</tbody>
</table>

- Interest rate risk and mortality risk seem to dominate GAO and Limit
- Fund risk seems to dominate GMIB
Main risk driver

<table>
<thead>
<tr>
<th>Sensitivity with respect to...</th>
<th>Option most affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest rate level θ</td>
<td>GAO/Limit</td>
</tr>
<tr>
<td>Volatility of mortality σ</td>
<td>GAO/Limit</td>
</tr>
<tr>
<td>Fund volatility σ_S</td>
<td>GMIB</td>
</tr>
<tr>
<td>Fund risk premium λ_S</td>
<td>GMIB</td>
</tr>
</tbody>
</table>

- Interest rate risk and mortality risk seem to dominate GAO and Limit
- Fund risk seems to dominate GMIB

Question of decomposing the risk between the different risk drivers requires further research!
Thank you very much for your attention!
References (1)

References (2)

Model parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>x</td>
<td>50</td>
</tr>
<tr>
<td>Term to maturity</td>
<td>T</td>
<td>15</td>
</tr>
<tr>
<td>Single premium</td>
<td>P_0</td>
<td>1</td>
</tr>
<tr>
<td>Conversion rate</td>
<td>g</td>
<td>0.05</td>
</tr>
<tr>
<td>Limit</td>
<td>L</td>
<td>1</td>
</tr>
<tr>
<td>Guaranteed account value</td>
<td>G</td>
<td>1</td>
</tr>
<tr>
<td>Number of realizations</td>
<td>N</td>
<td>10,000</td>
</tr>
<tr>
<td>Number of discretization steps</td>
<td>n</td>
<td>1,500</td>
</tr>
<tr>
<td>GBM initial value</td>
<td>$S(0)$</td>
<td>100</td>
</tr>
<tr>
<td>GBM risk premium</td>
<td>λ_S</td>
<td>0.03</td>
</tr>
<tr>
<td>GBM volatility</td>
<td>σ_S</td>
<td>0.22</td>
</tr>
<tr>
<td>CIR initial value</td>
<td>$r(0)$</td>
<td>0.0029</td>
</tr>
<tr>
<td>CIR speed of reversion</td>
<td>κ ($\tilde{\kappa}$)</td>
<td>0.2 (0.2)</td>
</tr>
<tr>
<td>CIR mean level</td>
<td>θ ($\tilde{\theta}$)</td>
<td>0.045 (0.045)</td>
</tr>
<tr>
<td>CIR volatility</td>
<td>σ_r ($\tilde{\sigma}_r$)</td>
<td>0.075 (0.075)</td>
</tr>
<tr>
<td>Explicit GBM-CIR correlation</td>
<td>ρ</td>
<td>0</td>
</tr>
<tr>
<td>Limiting age</td>
<td>ω</td>
<td>121</td>
</tr>
</tbody>
</table>