PHEV-EV Charging Evaluation - Potential Impact on the Utility

PHEV 2007 Conference

By Alec Tsang
Technical Support: Ken Lau & Dylan Gothard
Impact on the Utility

- Capacity
- Energy
- Power Quality (PQ)
BC Hydro System

- Serves 94% of BC’s population
- 11,000 MW
- 43,000 – 54,000 GWh/y
- 90% hydroelectric

Opportunity:

Displacement of oil as a transportation fuel
Capacity - Delivery

- Distribution bottleneck
- Copper losses from undersized conductors and transformers
- No impact on Transmission
Capacity – Supply

Monthly Average System Load by hour (January 2006)

- 190,000 PHEVs ~ 290,000kW or 290 MW

All time peak high 9,619 MW occurred on January 5, 2004 HE 18

Reliable power, at low cost, for generations. Reliable power, at low cost, for generations. Reliable power, at low cost, for generations. Reliable power, at low cost, for generations.
Energy

- 190,000 PHEVs
- PHEV Consumption: 1,100GWh/y
- BC Hydro Production: 43,000 – 54,000GWh/y
Energy - Overall Load Growth

The Emerging Gap

BC Hydro's electricity gap
BC Hydro's Supply and Demand Outlook

50% of incremental needs to be met by Conservation and Demand Side Management (DSM) programs.

PHEV Load Growth

50% DSM

drop reflects planned phase-out of Burrard

Historical Data

Forecasted Data

Energy (GWh)

Fiscal Year (year ending March 31)

85,000 80,000 75,000 70,000 65,000 60,000 55,000 50,000 45,000 40,000

BCHydro
PQ – In-field Study

Purpose: To assess the potential impact of a cluster of PHEVs

Representative of the following situations:

- Fleet
- Dense Residential (Condominium)
- Single Detached Dwelling Neighbourhood
PQ Project Description

• Golf cart fleet as a proxy for PHEV fleet
• Time of charging is representative of commercial fleets and person vehicles
• Battery charger technology is representative of future PHEVs
 > High frequency, power factor corrected chargers
 > Manufacturer is supplying to some of the major auto manufacturers that are developing PHEVs
PQ Project Site

Reliable power, at low cost, for generations. Reliable power, at low cost, for generations. Reliable power, at low cost, for generations. Reliable power, at low cost, for generations.
PQ Parameters

- Power Factor
- Harmonics
- Disturbances
- Voltage Flicker
PQ Results - Power Factor (at facility main)
PQ Results – Harmonics: THD% (Current at main bus)
PQ Results – Harmonics: THD% (Voltage at main bus)

Main Bus Average Voltage Harmonic Distortion

Pre-retrofit
Post-retrofit

Phase A VHD
Phase B VHD
Phase C VHD

VHD %

Reliable power, at low cost, for generations. Reliable power, at low cost, for generations. Reliable power, at low cost, for generations.
PQ Results – Harmonics: THD% (Voltage, fleet charging panel) & correlating current
PQ Results – CBEMA Curve, Voltage Disturbances @ Facility Electrical Main
Summary

• **Capacity:** Distribution bottleneck – must shift PHEV load away from peak

• **Energy:** Minor load growth contribution – manage supply/demand balance via long term energy planning

• **Power Quality:** No outstanding issues – follow up with real PHEVs
Next Steps

Reliable power, at low cost, for generations. Reliable power, at low cost, for generations. Reliable power, at low cost, for generations. Reliable power, at low cost, for generations.
Contact Information

Alec Tsang
Email: alec.tsang@bchydro.com