Plug-in Hybrid Benefits to the Xcel Energy Colorado System

November 1, 2007
Keith Parks, Ken Davies, Paul Denholm, Tony Markel
A Plug-In Hybrid Electric Vehicle (PHEV)

Fuel Flexibility

- PETROLEUM
- ELECTRICITY

And /Or

- ADVANCED ENGINE
- ENGINE IDLE-OFF
- ENGINE DOWNSIZING
- REGENERATIVE BRAKING
- ELECTRIC ACCESSORIES
- BATTERY RECHARGE

76hp gasoline engine, 67hp electric motor, 9.0kWh battery (30mi)
Daily Charging Strategies

Given driving habits, what is the effect of many vehicles on the electricity system?
Daily Charging Strategies

Given driving habits, what is the effect of many vehicles on the electricity system?

Do Nothing

5.3 kWh/Vehicle
Daily Charging Strategies

Given driving habits, what is the effect of many vehicles on the electricity system?

5.3 kWh/Vehicle
Daily Charging Strategies

Given driving habits, what is the effect of many vehicles on the electricity system?

Optimized to Off-Peak

5.3 kWh/Vehicle
Daily Charging Strategies

Given driving habits, what is the effect of many vehicles on the electricity system?

Opportunity Charging

9.4 kWh/Vehicle
Gasoline Savings

The largest benefit of PHEVs is gasoline savings

![Graph showing comparative fuel consumption for PHEVs]

Huge reductions in gasoline use are possible...

Total Yearly Energy Savings*

*Assumes gasoline at $3.00/gallon and electricity at $0.09/kWh

Combustion vehicle (CV) is a standard sedan (13,900 miles/year @ 26 mpg)

Hybrid Electric Vehicle (HEV) is the same sedan, but with hybrid drive technology (13,900 miles/year @ 36 mpg)
What are the Impacts to Xcel Energy?

- Infrastructure Utilization
- Additional Load
- Production Costs
- Capacity Impacts
- Emissions

UNKNOWN

Can Xcel Energy mitigate adverse impacts with controls or incentives?

We have to first understand what the impacts are.

Sneak Preview

Time of charging matters...

Coincident peak loading matters...

Tailpipe versus upstream emissions matters...
Incremental Cost (Generation Capacity)

- Costs are dominated by fuel cost
- As power is moved to the off-peak period…

![Chart: PHEV Electricity Average Cost (50k Vehicle)]

- Opportunity charging is the most costly charging strategy, but utilizes 75% more energy
Incremental Cost (Generation Capacity)

- Coincident peak loading necessitates additional generation capacity
- *Delayed to 10pm and Optimize to Off-Peak* scenarios avoid capacity expansion costs

<table>
<thead>
<tr>
<th>Charging Scenario</th>
<th>Annual Capacity Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Nothing/Status Quo</td>
<td>$126/kW* @ .339 kW/car = $43/car</td>
</tr>
<tr>
<td>Opportunity Charging</td>
<td>$126/kW* @ .619 kW/car = $78/car</td>
</tr>
</tbody>
</table>

*Assumptions: 15% ROI; 20% Capacity Margin; $700/kW overnight cost (Combustion Turbine)
Incremental Cost (Generation Capacity)

- Coincident peak loading is critical only a few hours per year

*opportunity charging strategy shown

<table>
<thead>
<tr>
<th>Hours of the year PHEV load increases system peak load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of PHEVs</td>
</tr>
<tr>
<td>Do Nothing/Status Quo</td>
</tr>
<tr>
<td>Opportunity Charging</td>
</tr>
</tbody>
</table>
Emission Footprint

- Time of day matters with regard to emissions
- As power is moved to the off-peak period...

Incremental emission rates are less than half the Xcel Energy Average

Xcel Energy Average Emission Rates

- NOX – 2.34 lbs/MWh
- SO2 – 2.69 lbs/MWh
- CO2 – 1,775 lbs/MWh

Source: Forecast PROSYM 2007
Total Vehicle Emissions (PHEVs vs. Gasoline)

- Tailpipe NOX decreases while total NOX emissions remain the same
- Total SO2 emissions depend on charging scenario
- CO2 emissions reduced by
 - 40% vs. combustion vehicles
 - 15% vs. hybrid vehicles

Current combustion vehicle (CV) is 2003 National Low Emission Vehicle (NLEV) standard of 0.3 gms/mi which is phased out from 2004-2006.

Future combustion vehicle (CV) is 2007 Tier 2 Bin 5 rating of 0.07 gms/mi. This is the standard all manufacturer’s fleets must meet.
Compare and Contrast

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Production Cost</th>
<th>Capacity Cost</th>
<th>Avoided Gasoline</th>
<th>Emissions</th>
<th>Distribution Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Nothing</td>
<td>Good</td>
<td>Worse*</td>
<td>Good</td>
<td>Better</td>
<td>Worse*</td>
</tr>
<tr>
<td>Delay to 10pm</td>
<td>Better</td>
<td>Best</td>
<td>Good</td>
<td>Good</td>
<td>Best</td>
</tr>
<tr>
<td>Optimized to Off-peak</td>
<td>Best</td>
<td>Best</td>
<td>Good</td>
<td>Worse</td>
<td>Best</td>
</tr>
<tr>
<td>Opportunity Charging</td>
<td>Worse</td>
<td>Worse*</td>
<td>Best</td>
<td>Best</td>
<td>Worse*</td>
</tr>
</tbody>
</table>

Could be mitigated with control technology/incentives
Future Work

• Vehicle to Grid
 – How does V2G effect MPG?
 – What is the turn-around efficiency?
 – Is there a charging/dispatch strategy that is a win/win for the consumer and the utility?
 – How does availability effect value?
Future Work (continued)

• Xcel Energy has announced a six-month test drive of PHEVs
 – Partners: Hybrids Plus, NREL, V2Green

• Converts six Ford Escape Hybrids to PHEVs with V2G technology, one of the nation’s first tests of this emerging technology

• Examines PHEV performance in varied climates and geographic regions
 – Three vehicles assigned to employees for personal use; Three assigned to utility fleet
Gasoline Savings

The largest benefit of PHEVs is gasoline savings

Comparative Fuel Consumption for PHEVs

Huge reductions in gasoline use are possible…

*Assumes gasoline at $3.00/gallon and electricity at $0.09/kWh

Combustion vehicle (CV) is a standard sedan (13,900 miles/year @ 26 mpg)

Hybrid Electric Vehicle (HEV) is the same sedan, but with hybrid drive technology (13,900 miles/year @ 36 mpg)
Thank you to Xcel Energy’s Utility Innovations, Global Energy Decisions and NREL for sponsoring this project. Thanks to the Office of Energy Management and Conservation and Hybrids-Plus for their innovation and enthusiasm.
Methodology

- Driving profile based on 227 GPS-tracked vehicles simulated to be PHEV20 using NREL’s ADVISOR model.

- System detail provided by Xcel Energy’s Generation Modeling team.

- Simulated electricity grid using Global Energy Decision’s PROSYM unit commitment and dispatch software.

- PHEV Load Analysis Tool created to aggregate driving profiles, simulate control strategies, and value capacity impacts.
Disclaimer and Government License

This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36-99GO10337 with the U.S. Department of Energy (the “DOE”). The United States Government (the “Government”) retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes.

Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the Government or any agency thereof. The views and opinions of the authors and/or presenters expressed herein do not necessarily state or reflect those of MRI, the DOE, the Government, or any agency thereof.