Martin Lysy

Date: | Friday, November 7, 2014 |
---|

Rapidly progressing particle tracking techniques have revealed that foreign particles in biological fluids exhibit rich and at times unexpected behavior, with important consequences for drug delivery. Yet, there remains a frustrating lack of coherence in the description of these particles' motion. Largely this is due to a reliance on functional statistics (e.g., mean-squared displacement) to perform model selection and assess goodness-of-fit. However, not only are these functional characteristics typically estimated with substantial variability, but they are shared by many stochastic processes -- each making fundamentally different predictions for important quantities of scientific interest.

Here, we conduct a detailed Bayesian analysis of leading candidate models for subdiffusive particle trajectories in human pulmonary mucus. Model selection is achieved by way of intrinsic Bayes factors, which avoid both noninformative priors and "using the data twice". Goodness-of-fit is evaluated via several second-order criteria along with exact model residuals. Our findings suggest that a simple model of fractional Brownian motion describes the data just as well as a first-principles physical model of viscoelastic subdiffusion.

Important Dates

December 10 – December 21: Fall Term Exam Period

December 22 – January 2: Winter Holiday (University Closed)

News

Upcoming Exams

**
STAT 1000
Final Exam
**

Tuesday, December 11
at
9:00 a.m.

**
STAT 2000
Final Exam
**

Tuesday, December 11
at
1:30 p.m.

**
STAT 4530
A01
Final Exam
**

Tuesday, December 11
at
1:30 p.m.

**
STAT 2150
A01
Final Exam
**

Tuesday, December 11
at
1:30 p.m.

Upcoming Seminar

Statistics seminar:
**Erfan Houqe**:
“Random effects covariance matrix modeling for longitudinal data with covariates measurement error”
—
Thursday, January 17 at 2:45 p.m.,
P230 Duff Roblin.

Where are they now?

Stella Leung, M.Sc. (2004)

Shirley Mills, M.Sc. (1970)