Saman Muthukumarana

University of Manitoba, Department of Statistics

“Meta-analytic Methods using Dirichlet Process”

Date: Thursday, March 23, 2017

In many scientific disciplines, it is common to find large number of studies addressing the same research question of interest. Meta-analysis can be used for combining or contrasting the results from these multiple studies. We develop a Bayesian approach for meta-analysis using Dirichlet process. The key aspect of the Dirichlet process in meta-analysis is the ability to assess the evidence of statistical heterogeneity in the underlying effects across studies while relaxing the distributional assumptions. Assuming that the study effects are generated from a Dirichlet process, the study effects parameters have support on a discrete space and enable borrowing of information across studies while facilitating clustering among studies. We also extend the approach for binary data in the presence of excessive zeros and propose a modified unconditional odds ratio which accounts for excessive zeros. Results from the data analyses, simulation studies, and the log-pseudo marginal likelihood (LPML) model selection procedure indicate that the proposed models perform better than conventional alternative methods. Some extensions to network meta-analysis will also be discussed.

Important Dates

April 22 – April 29: Final exam period for most classes. Students must remain available until all exam obligations have been fulfilled

May 6: Final Grades Available

Where are they now?

Llwellyn Maria Armstrong, M.Sc (1992)

Chel Hee Lee, M.Sc. (2009)