GUESS: Problem Solving Method

Academic Learning Centre
205 Tier
204-480-1481
umanitoba.ca/student/academic learning
QUESTION: The correlation between student midterm scores and final exam scores is 0.55. The midterm scores for all students has a mean of 85 and a standard deviation of 6, while the final exam has a mean of 70 and standard deviation of 9. Gloria scored 93 on the midterm. **What mark can we predict for her final exam score?**
The correlation between student midterm scores and final exam scores is 0.55. The midterm scores for all students has a mean of 85 and a standard deviation of 6, while the final exam scores has a mean of 70 and standard deviation of 9. Gloria scored 93 on the midterm. **What can we predict her final exam score to be?**

| Given: | Correlation \((r) = 0.55\)
Midterm mean \((\bar{x}) = 85\)
Midterm Standard deviation \((S_x) = 6\)
Final exam mean \((\bar{y}) = 70\)
Final exam Standard deviation \((S_y) = 9\)
Gloria’s Midterm score \((x) = 93\) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown:</td>
<td></td>
</tr>
<tr>
<td>Equations:</td>
<td></td>
</tr>
<tr>
<td>Set-up:</td>
<td></td>
</tr>
<tr>
<td>Solve:</td>
<td></td>
</tr>
</tbody>
</table>
The correlation between student midterm scores and final exam scores is 0.55. The midterm scores for all students has a mean of 85 and a standard deviation of 6, while the final exam scores has a mean of 70 and standard deviation of 9. Gloria scored 93 on the midterm. **What can we predict her final exam score to be?**

| Given: | Correlation (r) = 0.55
| | Midterm mean (x̄) = 85
| | Midterm Standard deviation (Sₓ) = 6
| | Final exam mean (ȳ) = 70
| | Final exam Standard deviation (Sᵧ) = 9
| | Gloria’s Midterm score (x) = 93 |

| Unknown: | Intercept (b₀) = ?
| | Slope (b₁) = ?
| | Gloria’s Final exam score (Ŷ) = ? |

Equations:	
Set-up:	
Solve:	
The correlation between student midterm scores and final exam scores is 0.55. The midterm scores for all students has a mean of 85 and a standard deviation of 6, while the final exam scores has a mean of 70 and standard deviation of 9. Gloria scored 93 on the midterm. **What can we predict her final exam score to be?**

| Given: | Correlation \(r\) = 0.55
| | Midterm mean \(\bar{x}\) = 85
| | Midterm Standard deviation \(S_x\) = 6
| | Final exam mean \(\bar{y}\) = 70
| | Final exam Standard deviation \(S_y\) = 9
| | Gloria’s Midterm score \(x\) = 93 |

| Unknown: | Intercept \(b_0\) = ?
| | Slope \(b_1\) = ?
| | Gloria’s Final exam score \(\hat{Y}\) = ? |

| Equations: | \(b_1 = r \times \frac{S_y}{S_x}\)
| | \(b_0 = \bar{y} - b_1 \bar{x}\)
| | \(\hat{Y} = b_0 + b_1 x\) |

| Set-up: |

| Solve: |

| Given: | Correlation (r) = 0.55
| | Midterm mean (\(\bar{x}\)) = 85
| | Midterm Standard deviation (\(S_x\)) = 6
| | Final exam mean (\(\bar{y}\)) = 70
| | Final exam Standard deviation (\(S_y\)) = 9
| | Gloria's Midterm score (x) = 93
| Unknown: | Intercept (\(b_0\)) = ?
| | Slope (\(b_1\)) = ?
| | Gloria's Final exam score (\(\hat{y}\)) = ?
| Equations: | \(b_1 = r * \frac{S_y}{S_x}\)
| | \(b_0 = \bar{y} - b_1 \bar{x}\)
| | \(\hat{y} = b_0 + b_1 x\)
| Set-up: | \(b_1 = 0.55 * \frac{9}{6}\)
| | \(b_1 = 0.825\)
| | \(b_0 = 70 - 0.825 \times 85\)
| | \(b_0 = -0.125\)
| Solve: |
Given:
- Correlation \((r) = 0.55\)
- Midterm mean \((\bar{x}) = 85\)
- Midterm Standard deviation \((S_x) = 6\)
- Final exam mean \((\bar{y}) = 70\)
- Final exam Standard deviation \((S_y) = 9\)
- Gloria’s Midterm score \((x) = 93\)

Unknown:
- Intercept \((b_0) = \) ?
- Slope \((b_1) = \) ?
- Gloria’s Final exam score \((\hat{y}) = \) ?

Equations:
- \(b_1 = r \cdot \frac{S_y}{S_x}\)
- \(b_0 = \bar{y} - b_1 \bar{x}\)
- \(\hat{y} = b_0 + b_1 x\)

Set-up:
- \(b_1 = 0.55 \cdot \frac{9}{6}\)
 - \(b_1 = 0.825\)
- \(b_0 = 70 - 0.825 \cdot (85)\)
 - \(b_0 = -0.125\)

Solve:
- \(\hat{y} = b_1 x + b_0\)
 - \(\hat{y} = 0.825 \cdot 93 + (-0.125)\)
 - \(\hat{y} = 76.6\)
Campus Resources

- Professors and Teaching Assistants

- Academic Learning Centre Tutors

- Help Centres
 - Math (412 Machray Hall)
 - Computer Science (E2-422A Engineering)
 - Statistics (311 Machray Hall)
 - Physics (114 Allen)
 - Chemistry (128 Parker)

- Tutors on campus
Academic Learning Centre

We offer:
- **One to One** tutoring
- **Workshops**
- **Supplemental Instruction**

[Website]
Academic Learning Centre

Webpage: http://umanitoba.ca/student/academiclearning/
Email: academic_learning@umanitoba.ca
Fort Garry Phone: 204-480-1481
Fort Garry Reception Desk: 205 Tier (U1 First Year Centre)

Bannatyne Phone: 204-272-3190
Bannatyne Reception Desk: S211 Medical Services Building