4R Phosphorus Fertilizer Management in the Northern Great Plains

Cynthia Grant and Don Flaten
University of Manitoba
2019 is the 350th anniversary of the discovery of phosphorus by Hennig Brandt in 1669
Historical Background: The Red Book

http://canadianagronomist.ca/resource/the-red-book/
Red Book II ... the Sequel? ... only P, so far

4R Management of Phosphorus Fertilizer in the Northern Great Plains: A Review of the Scientific Literature

Cynthia Grant and Brian Grant

Table of Contents

Introduction ...

Acknowledgements ...

Abbreviations ..

1.0 Background of 4R Nutrient Stewardship ...

2.0 Role of P in Crop Production ..

3.0 Phosphorus Behaviour in the Soil ...

4.0 Environmental and Sustainability Concerns Related to Phosphorus Fertilizer

5.0 Phosphorus Fertilizer Rates ..

6.0 Phosphorus Fertilizer Sources, Additives, and Microbial Products ...

7.0 Phosphorus Fertilizer Placement ..

8.0 Phosphorus Fertilizer Timing ..

9.0 Creating a Cohesive 4R Management Package for Phosphorus Fertilization

https://fertilizercanada.ca/nutrient-stewardship/4r-research-network/
Characteristics of the Northern Great Plains

- Runs from north part of Nebraska to northern limits of agriculture in Canada
- Cold winters with snow
- Annual precipitation from 300 to 500 mm, but highly variable
 - Drought is often limiting
- Grassland, aspen parkland and mixed-wood forest
- Soils are generally high in organic matter
Environment and Cropping System Drive P Management Decisions On Northern Great Plains

- Cold soils in spring
- Short growing season
- Often high pH carbonated soils
- Snow-melt runoff
- Reduced tillage
- Movement towards diversified rotations
- High-yielding cultivars
Chapter 1 – Background for 4R Nutrient Stewardship

✓ Right rates
✓ Right sources
✓ Right placement
✓ Right timing

In a cohesive combination suited to the crop and the environment
Chapter 2 – Role of Phosphorus for Crop Production

- Phosphorus is critical from the earliest stages of crop growth
 - Energy transfer (ATP)
 - Component of cell membranes
 - Genetic material (DNA)
- Promotes photosynthesis, root development, tillering, early flowering, seed production, and uniform ripening
- Taken up only as “ortho-P” (H$_2$PO$_4^-$ or HPO$_4^{2-}$)
 - Moves to root mainly by diffusion, over very short distances
P Deficiency

... purpling of leaves / stems
P deficiency can Lead to Stunted Growth and Reduced Yield
Chapter 3 - P Behaviour in Soil

- Very small concentrations of P in solution
- Most soil P is retained strongly by precipitation and immobilization in soil solids, and adsorption to soil surfaces
- Release for crop uptake is affected by soil, plant & environmental factors

Other Soluble Forms
(eg. chelates)

Free Ions in Soil Sol’n
Orthophosphate
(H_2PO_4^-, HPO_4^{2-})

Atmosphere
Fertilizer P
eg. MAP, APP

Crop Residues,
Livestock Manures,
Municipal Waste

Plant Roots

Root Membranes

Mass Flow
Diffusion
(Root Interception)

Soil Solution

Precipitation/Dissolution
Immobilization/Mineralization

Soil Solids & Surfaces

Bulk Solids
(Inorganic and Organic)
DCPD, OCP, HA, FA
Organic P

pH & aeration
Master Variables

Other Soluble Forms
(eg. chelates)

Adsorption/Desorption

Soil Surfaces
(Inorganic and Organic)
Majority of Soils on Northern Great Plains Are Deficient in P

Percent of Samples Testing Below Critical Levels for P in 2015

International Plant Nutrition Institute 2016
Canola Response to P in Western Manitoba

No Starter P

25 lb P2O5 applied as MAP

25 bu/acre

35 bu/acre

15 lb NW MKP per ac, equiv. to ~ 10 ppm Olsen P

Courtesy of John Heard
Chapter 4 - Environmental and Sustainability Concerns Related to P Fertilization

- Small amounts of P loss cause large problems with water quality
- Most P loss in NGP is dissolved P during snowmelt
- Careful management of P rate, placement and timing is critical for reducing the risk of P loss to surface water
- Cadmium content in P fertilizer is also a concern ... for human health
Lake Winnipeg is a concern in the Lake Winnipeg Watershed.

- Lake Winnipeg is the 10th largest freshwater lake in the world.
- Watershed area of about 1,000,000 km² largely in the Northern Great Plains.
 - Northern Great Plains area is 1,300,000 km².
- Severe eutrophication due to excess P inputs.
Spring Snowmelt Drives P Loss on Northern Great Plains

• In Northern Great Plains, unlike other areas where erosion dominates, most loss occurs during spring snow-melt, which accounts of 80% of runoff

• Runoff from snow-melt over frozen ground leads to little erosive loss and more dissolved P loss
 – P will dissolve from surface P in soil and in vegetation
 – Some traditional soil and water conservation practices that reduce water erosion may increase the loss of dissolved P in Northern Great Plains watersheds

• Reduce P concentration at soil surface to reduce P losses
Right rate
- Right source
- Right placement
- Right timing

In a cohesive combination suited to the crop, economics, and environment
P Rate can be Managed for Short- or Long-term Sustainability

Short-term sustainability
- Rate chosen based on short-term economic yield response in the year of application
 - Often seed-place a low rate of P
 - May deplete soil P over time
- Suitable for short-term land tenure
- Where fertilizer costs are high relative to crop prices

Long-term sustainability
- Target applications to reach and maintain target soil test
 - Build on low-P soils
 - Deplete on high-P soils
- Long-term economics considers residual P value
- Suitable for long-term land tenure
- If P costs are low relative to crop prices
Soil tests Form the Basis for P Rates Recommendation

Appendix Table 17. Phosphorus recommendations for field crops based on soil test levels and placement.

<table>
<thead>
<tr>
<th>Soil Phosphorus (sodium bicarbonate or Olsen P test)</th>
<th>Cereal</th>
<th>Corn Sunflower</th>
<th>Canola Mustard Flax</th>
<th>Buckwheat Fababean</th>
<th>Potatoes</th>
<th>Peas Lentils Field beans</th>
<th>Soybeans¹</th>
<th>Legume forages</th>
<th>Perennial grass forages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
<td>lb/ac</td>
<td>Rating</td>
<td>ppm</td>
<td>lb/ac</td>
<td>Rating</td>
<td>ppm</td>
<td>lb/ac</td>
<td>Rating</td>
<td>ppm</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>VL</td>
<td>40</td>
<td>40</td>
<td>S¹</td>
<td>40</td>
<td>20</td>
<td>S¹</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>L</td>
<td>40</td>
<td>40</td>
<td>B³</td>
<td>40</td>
<td>20</td>
<td>S¹</td>
<td>55</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>M</td>
<td>35</td>
<td>35</td>
<td>B³</td>
<td>35</td>
<td>20</td>
<td>S¹</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>M</td>
<td>30</td>
<td>30</td>
<td>S¹</td>
<td>30</td>
<td>20</td>
<td>S¹</td>
<td>45</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>M</td>
<td>20</td>
<td>20</td>
<td>B³</td>
<td>20</td>
<td>20</td>
<td>S¹</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>H</td>
<td>15</td>
<td>15</td>
<td>S¹</td>
<td>15</td>
<td>0</td>
<td>S¹</td>
<td>35</td>
</tr>
<tr>
<td>35</td>
<td>10</td>
<td>H</td>
<td>10</td>
<td>10</td>
<td>B³</td>
<td>10</td>
<td>0</td>
<td>S¹</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>VH</td>
<td>10</td>
<td>10</td>
<td>S¹</td>
<td>10</td>
<td>0</td>
<td>S¹</td>
<td>30</td>
</tr>
<tr>
<td>20+</td>
<td>40+</td>
<td>VH+</td>
<td>10</td>
<td>10</td>
<td>S¹</td>
<td>10</td>
<td>0</td>
<td>S¹</td>
<td>30</td>
</tr>
</tbody>
</table>
Yield Response to P is Highly Variable from Year to Year ... and from One Crop Phase to Another

Critical Soil Test P Thresholds Are Not Exact

- Alberta data show a critical level of 20-25 ppm for average of 10% response
- Above this level, only maintenance (crop removal) application would be required
- ... but the variability was large

Ross McKenzie, Alberta Agric.
Critical Soil Test P Thresholds Are Not Exact

- Given the large variability, a probability approach may be more realistic than a “response curve”

Karamanos, 33 site years in AB, SK, MB 1988-1995
Applying “Safe” Rate of Seed-Placed P in Short-Term Sufficiency Program Can Deplete Soil P

<table>
<thead>
<tr>
<th>Crop</th>
<th>Yield bu/ac</th>
<th>P Removal lb</th>
<th>Seed Limit P_2O_5 ac⁻¹</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>60</td>
<td>35</td>
<td>30</td>
<td>-5</td>
</tr>
<tr>
<td>Canola</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>-20</td>
</tr>
<tr>
<td>Soybeans</td>
<td>40</td>
<td>32</td>
<td>10</td>
<td>-22</td>
</tr>
<tr>
<td>Barley</td>
<td>80</td>
<td>38</td>
<td>50</td>
<td>+12</td>
</tr>
<tr>
<td>Flax</td>
<td>32</td>
<td>20</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Peas</td>
<td>50</td>
<td>38</td>
<td>20</td>
<td>-18</td>
</tr>
<tr>
<td>Oats</td>
<td>100</td>
<td>29</td>
<td>50</td>
<td>+21</td>
</tr>
</tbody>
</table>

Rates are based on disk or knife openers with a 1 in. spread, 6 to 7 in. row spacing and good to excellent soil moisture
Rotations Are Shifting to More Crops that Are Sensitive to Seed-placed P

- Increased acres of canola, soybeans and corn,
 - High rates of P removal
 - Limited amount of P can be placed in the seed row, without risk of toxicity
- Decreased barley and wheat acres
 - Less opportunity to place high rates of P with seed
- Yields of all crops have increased
 - Greater removal of P in the grain
- Soil P can be depleted over time
Crops Respond to P Fertilizer and P Fertility, so Depleted Soil P can Decrease Crop Yield Potential

Average Olsen soil test P for all rates of seed placed P after 5 years

- 8 ppm
- 4 ppm
- 5 ppm

Amount of P b'cast initially (lb P$_2$O$_5$/ac)

- 163
- 82

Optimum yield was higher with moderate rather than very low soil test P

Wagar et al. 1986
Solutions to the Phosphorus Deficit

• Side-band or mid-row band to move P away from the seed
• Manage P through the rotation by increasing P in other less sensitive crops
• Use a long-term sustainability program, to maintain soil P at target levels
 – Broadcast or band higher levels of P when needed
Long term sustainability strategy to move soil P levels into an optimum range over time

- **Buildup range**: If low, may want to build by applying fertilizer or manure P in excess of crop removal.
- **Maintenance range**: If near optimum, can balance input and removal.
- **Drawdown range with starter P only**: If excess, can draw down by using only starter P.

Adapted from OMAFRA Soil Fertility Handbook

- **10-20 ppm Olsen soil test P**

Soil P Level:
- VL
- L
- M
- MH
- H
- H+

P Rate relative to Removal:
Olsen P Reflects P Balance in Alberta and Manitoba Soils after 8 years of P Applications in a Durum-Flax Rotation

- Olsen P increased with high P rates
- Olsen P declined when no P applied
- At 40 lb phosphate/acre/year, Olsen P was maintained at most sites
- Surplus P to raise Olsen P by 1 ppm:
 - 16-23 lb P_2O_5/ac at Carman
 - 29-32 lb P_2O_5/ac at Carstairs
 - 27-35 lb P_2O_5/ac at Brandon
 - 21-25 lb P_2O_5/ac at Ft. Sask.
 - 32-41 lb P_2O_5/ac at Phillips
- Most rapid change in light-textured, poorly buffered soils

Grant et al. unpublished
Key Messages for Selecting the Right Rate of P

Avoid excess P depletion or accumulation

- Deficits can reduce P fertility & long-term productivity
- Surpluses can increase risk of P loss and eutrophication
- Target Olsen P levels of around 15 ppm
 - Build levels in cereal years, with side- or mid-row band applications, or with manure
 - Consider a maintenance strategy when target soil test P levels are attained
 - Add only starter P if soil test P exceeds target levels
Right Source

- Right rate
- Right source
- Right placement
- Right timing

In a cohesive combination suited to the crop, economics, and environment
Traditional Phosphate Fertilizers

1. Rock phosphate (highly insoluble, but rec. for organic)
2. Triple super phosphate or TSP (eg. 0-45-0)
3. Monoammonium phosphate or MAP (eg. 11-52-0)
4. Ammonium polyphosphate or APP (eg. 10-34-0)
Monoammonium Phosphate (MAP)

- Monoammonium phosphate is the standard fertilizer source for Western Canada
 - Inexpensive to manufacture
 - Easy to handle granule
 - Analysis in the range of 11-52-0
- Performs better than calcium phosphates on calcareous soils
 - Ammonium in formulation enhances efficiency on high pH, calcareous soils
- Less toxic than DAP for seed placement

Wheat Grain Yield Response to MAP and MCP in Saskatchewan (1939-1943)

https://www.ipni.netpecifics-en
Ammonium Polyphosphate or APP (eg. 10-34-0)

- A reasonably popular form of liquid P fertilizer
- Poly-P is not immediately available to plants but is quickly split into ortho-P by soil’s phosphatase enzymes
- Reactions and effectiveness similar to MAP in NGP
Products that Attempt to Improve P Use Efficiency

• Use of more crop available forms
 – Ammoniated phosphates
 – Dual banding N and P fertilizer together
 – Fluids vs. dry/granular
 – Liquid orthophosphates vs. polyphosphates

• Reduce soil retention
 – Avail

• Release P gradually to match plant uptake
 – Polymer coated MAP and struvite

• Inoculants that release P in rhizosphere or improve plant access to P
 – Provide *(Penicillium bilaii)*
 – Mycorrhizae
What Else is In the Band?

- P availability is increased by ammonium in the band
 - Ammoniated P fertilizers (e.g. MAP, APP) outperform other P fertilizers
 - Adding urea or ammonia to MAP bands (dual banding) increases fertilizer P uptake when fertilizer is banded away from seed
- P availability is delayed when banded with high rates of N
 - Typical rates of N will delay P uptake for several weeks due to band toxicity
- Some starter P should be placed in seed row when “dual banding” N and P
 - Allow early season access to P
Fluid vs. Dry Fertilizers

- Under arid, highly calcareous conditions in Australia, fluid forms of P are more available than dry:
 - Water moving toward dissolving granule carries Ca to the fertilizer
 - Ca precipitates P and leads to small reaction zone
 - Fluid forms increase reaction zone and allow greater root uptake
- Similar benefit has not shown up in tests in Manitoba and is unlikely in humid areas
No Difference Between Dry MAP & Fluid APP in Wheat Yield Over Three Years at Two Sites Near Brandon

• Similar results in previous studies by Racz and in later studies on canola, durum wheat and soybean

• Soils in MB trials were much more humid and less calcareous than the 70% calcium carbonate in the Australian trials
Struvite

- Commercial struvite (e.g., Crystal Green) is recovered from wastewater.
- Represents an important step towards sustainable use of recycled P.
Overall recovery of P from struvite and coated MAP in wheat and canola was similar to uncoated MAP (11-52-0) in clay loam and sand.

What About Microbial Products?

Two major products sold in western Canada

- Provide (or Jumpstart and part of TagTeam)
- Mycorrhizal inoculants
- Little evidence found in the literature of reliable benefits of inoculants on crop yield or P uptake
 - Mycorrhizal populations are very important but native populations may be adequate
 - If application rates are reduced to below crop removal when these products are used, it will increase the P deficit ... the imbalance between crop removal and P applied
Key Messages for Selecting the Right Source of P

- MAP (eg. 11-52-0) and APP (eg. 10-34-0) are the standard fertilizer sources for the Northern Great Plains
 - Ammonium enhances efficiency on high pH, calcareous soils
 - Dual banding with ammonium N can improve P efficiency
- No evidence of significant agronomic difference between orthophosphate and polyphosphate
- Fluids and dry formulations perform similarly on the Northern Great Plains
- Novel P fertilizer formulations or use of microbial products have generally not shown increased effectiveness over MAP and APP under field conditions on the Northern Great Plains
- Recycled P products such as struvite offer improvements in long term sustainability
Chapter 7, 8 - Right Placement and Timing

- Right rate
- Right source
- Right placement
- Right timing

In a cohesive combination suited to the crop, economics, and environment
Principles of Phosphorus Nutrition that Affect P Placement and Timing

- **P is needed early in growth**
 - Plants must have adequate supply in first 3-6 weeks

- **Phosphorus will not move far through the soil**
 - Movement is limited to a few mm

- **Adequate P needs to be near the seed-row so the plants can access it early in the season**
Placement Will Vary with Sustainability Approach and Rate of Application

• Broadcast applications can work agronomically with high application rates or if background soil P levels are high
 – Provides adequate supply of P to seedling from bulk soils
 – Enables long-term maintenance of P balance
 – But leads to accumulation of P at surface, especially under reduced tillage systems ... increases risk of runoff losses

• Banding improves efficiency when using lower rates of application
 – For short-term sustainability approach
Banding Improves P Availability

- Slows tie-up of P in soil
 - Important on high pH, carbonated soils of NGP
 - Having some N in the band is beneficial
- Bands must be placed where roots will contact them early in season
 - Seed-placed
 - Side-banded
- Some plant roots proliferate in bands
 - Fertilizer bands provide high concentration
 - More roots in the band increase uptake
- Amount that can safely be placed with the seed varies with crop type
Banding Near Seed-Row Important on Cold Soils & Short Growing Season of Northern Great Plains

• P encourages crop maturity which is an asset for short growing season

• Cold soils reduce P availability
 – Lower P solubility and movement
 – Slower root growth

• Banding P near the seed at the time of seeding improves availability when P availability is low

Greater chance of response to starter P with early seeding on cold soils
Starter P may increase yield with cold soils and early seeding even on relatively high P soils

+10 kg/ha Seed row P$_2$O$_5$

No starter P

Fall band 70-30-10-10 on whole field

Photo: Aaron Baldwin, Cargill
Excess Seed-placed Monoammonium Phosphate Can Cause Seedling Damage in Canola and Other Crops

- Toxicity is mainly related to salt effect from N portion of MAP or APP fertilizer
 - Blending with S can increase damage
- Toxicity will be affected by soil characteristics and weather
- Similar damage can also occur with soybean and flax

![Graph showing % Emergence and Stand Density vs. Kg Phosphate per Hectare and Phosphate (kg ha⁻¹)]

J. Schoenau
Seed-Placed MAP Can Cause Seedling Damage in Sensitive Crops, eg. Canola at Portage la Prairie

20 lbs P$_2$O$_5$/ac as MAP (11-52-0) with disc openers at 12 inch spacing

No seedrow P applied
Seedling Damage was Reduced by Struvite and Controlled Release Phosphate

- Struvite and coated MAP reduce the risk of seedling toxicity
- Lower salt and ammonium concentration in seed-row
- Can also move band away from seed

Katanda et al. 2019
Agron. J. 111:390–396
Banding P Below Surface Reduces Risk of Environmental Losses

- Broadcasting P is agronomically inefficient and leaves soluble P on the surface prone to run-off
 - Especially with conservation tillage
 - Especially with fall application
- P banded in soil increases P efficiency and reduces P accumulation near soil surface
- Environmentally beneficial because P is placed under soil surface after spring snowmelt runoff
- Agronomically beneficial, especially in cold soils in areas with short growing season
Runoff losses for P applied at 100 lbs MAP (11-52-0) per acre in laboratory studies were 50 times greater for broadcast P than for P banded 1 cm below the soil surface (Smith et al. 2016).
Key Messages for Selecting the Right Placement and Timing for P Fertilizer

• Plants need P from their earliest growth stages
 – P fertilizer should be applied when and where the crop can access it early in the season.
• Cold soils in the early spring can restrict root growth and P availability, limiting early season P supply to crops
• Band application near the seed-row can improve P efficiency
 – Banding slows soil reactions that reduce P availability
 – Place P bands where plant roots will intercept them in early growth
• Broadcast P at the soil surface is agronomically less efficient than in-soil bands and increases the risk of P runoff
• In-soil banding is agronomically and environmentally beneficial for P applications on the Northern Great Plains
Chapter 9 – Creating a Cohesive 4R Management Package for Phosphorus Fertilization

- Right rate
- Right source
- Right placement
- Right timing

In a cohesive combination suited to the crop, economics, and environment
4R P Management on Northern Great Plains

- Environment and management system drive 4R practices on Northern Great Plains
- Cold soils at planting restrict P availability and root growth
 - Benefits of banding in or near seed-row increase
- Snow-melt drives P losses through dissolved P movement in runoff
 - Reduce P concentration at the soil surface
 - Benefits of banding at seeding
- Diversification and intensification increases P removal
 - Balance P input with off-take to avoid excess accumulation or depletion of P over time
Employing the science-based principles of 4R P fertilizer stewardship is vital for sustainable crop production.

The most efficient sources of P fertilizer for this region are ammonium phosphates.

Long term sustainable crop production requires P fertilizer rates that match crop removal.

Banding P fertilizer in or near the seed-row is agronomically and environmentally beneficial.

- Right source
- Right rate
- Right placement
- Right timing
P Management – The next 350 Years?

- P is a finite resource
 - Whether timeframe is 50 years or several hundred
- P is required to feed the growing world population
- Every unit of P must be used and reused efficiently for long-term sustainability
 - Efficient fertilizer use
 - Reduction of P losses from agricultural systems
 - Capture and recycling of P in waste streams and animal manures

Sustainability is the P challenge for the next 350 years
Thank you to the project supporters

This review was funded by Fertilizer Canada and the North American 4R Research Fund.

The authors were assisted with contributions of literature from:
Chris Holzapfel, IHARF; Jeff Schoenau, U. of S.; Alan Moulin, AAFC Brandon; Henry Wilson, AAFC Brandon; Ramona Mohr, AAFC Brandon; Steve Crittenden, AAFC Brandon; Shabtai Bittman, AAFC Agassiz; Mervin St. Luce, AAFC SPARC; S. S. Mahli, Retired AAFC; Clain Jones, Montana State University; Ray Dowbenko, Retired, Agrium/Nutrien; Patrick Carr, Montana State University; Jay Goos, NDSU; David Franzen, NDSU; Fran Walley, U. of S; Ross McKenzie, Retired AB Ag; Tom Jensen, IPNI; Diane Knight, U. of S; Garry Hnatowich, SK ICDC; Geza Racz, U of M (Prof. Emeritus); Rigas Karamanos, Koch; Len Kryzanowski, Alberta Agriculture; Dan Heaney, Fertilizer Canada consultant; Les Henry, U of S (Prof. Emeritus); Con Campbell, Retired AAFC; Jeff Jacobsen, Montana State U. (Prof. Emeritus); John Heard, MB Ag; Lyle Cowell, Nutrien; Tom Bruulsema, IPNI; Stewart Brandt, Northeast Ag. Research Fdn.; Taryn Dickson, Canola Council of Canada; Murray Hartman, Alberta Agriculture; Paul Fixen, Retired IPNI; Eric Bremner, Western Ag Innovations; Daryl Domitruk, MB Pulse & Soybean Growers.
Thank You For Your Attention