

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 		 	 	

	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	

	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	 	 	 	
	 	

 	 	 	 	
 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	
	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	 	

COMP 1020 – Introductory Computer Science 2

Course Description

Calendar entry

(Lab Required) More features of a procedural language, elements of programming. May not
be 	held 	with 	COMP 	1021.	Prerequisite: [One	of	COMP	1010,	COMP	1011,	COMP	1012,	or
COMP 1013] or [Computer Science 40S (75%) and (one of 40S Mathematics (50%), MATH
1018,	 or	 MSKL	 0100)].

General Course Description

By	this 	point students	 have learnt	to design basic algorithms and 	write 	instructions 	in	a	
procedural	language	 to be executed by a computer. This includes defining	 and	 using	
variables, methods / functions, conditional expressions,	iteration	 via loops, and simple data
structures	 such	 as arrays.		

In this class, we introduce a new programming paradigm	 (object-oriented programming),
reading/writing data to/from	 files stored on a computer, data structures that use memory
references, and using recursion to solve simple problems. We also discuss different
algorithms for	 searching	 and	 sorting.

Detailed Prerequisites

Before entering	this	course,	a 	student 	should	be	able	to:

• Represent ideas and information in a way that computers can understand and act
on.

• Read,	write, and run moderately complex programs using a procedural
programming language.

• Describe basic programming concepts and 	structures 	in	plain	English.
• Analyze and implement basic algorithms such	 as	 searching.

Course Goals

By	the 	end 	of 	this 	course 	students	 will:

• Use	classes and objects effectively to design and implement structured
representation of information.

• Use and implement data structures to solve a problem, with emphasis on arrays and
linked 	lists.

• Use	 an	interface to 	define and make use of the 	stack	and 	queue 	abstract	data	types.

 	 	
 	 	 	

	
 	
 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	
 	 	 	 	 	 	 	

	 	 	 	
 	 	

	 	 	

	

 	 	 	 	 	 	
	

 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	
	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	

	 	 	 	 	 	

	

 	 	 	
	

 	 	 	 	
 	 	 	 	 	 	 	

• Write 	software 	that	performs operations	on	textual 	data.
• Experience	working with a	 collection	of	data	using	 a	 built-in	data 	type	(e.g.,	Java

ArrayLists).
• Write 	software 	that	deals 	with 	large 	sets 	of 	data	using	files 	stored 	on	disk.
• Formulate recursive solutions to simple problems and write simple recursive

methods.
• Implement simple searching and sorting algorithms.
• Discover how algorithm	 complexity is analyzed via	big-Oh 	notation	 using simple

searching	and	sorting algorithms as examples.
• Practice	 skills	 needed	 to	 write	 code	 that handles failures	 gracefully,	including	

through basic error	checking	and	the	use	of	language	constructs	like	Exceptions.

Learning outcomes

Introduction to procedural elements of Java

Students 	should be able 	to:

1. Write and 	run	a	 procedural	 program	 in a new programming language (Java),
transferring	skills 	learned 	in	previous 	courses 	(Python	or 	Processing).

2. Download	 and install the JDK and a simple 	text	editor 	/	IDE	(e.g.,	Dr.	Java).
3. Write, compile, and run a basic Java program	 in a single file, with a main method.

OOP Basics

Students 	should be able 	to:

1. Write a simple-to-moderately complex class which includes constructors,	instance	
variables	and	 methods, and class variables and methods.

2. Compile and run a Java program	 with multiple files located in the same directory.
3. Use	instances	of	user-defined	 classes	 in	other	user-defined class and within main

methods.
4. Explain	how	and why	the	concept	of 	encapsulation	is 	useful,	and	how	encapsulation	

is achieved via access modifiers and accessors / mutators.
5. Understand object references and use them	 appropriately in code,	including	the	this	

keyword 	in	Java	and deep versus shallow object copies.

File I/O and Exceptions

Students 	should be able 	to:

1. Write 	code 	that	creates,	 uses,	 throws,	and catches built-in	and	user-defined
exceptions.

2. Be 	aware that	code 	can	also 	use 	a finally block	 when	handling	 exceptions.
3. List the	 order	 of	 operations	 in a try/catch/finally block when given	a	piece	of	code.

 	
 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 		
 	 	 	 	 	
 	 	 	 	 	 	 	
 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	 	 	

	 	

	

 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	

	

 	 	 	 	 	 	 	 	 	
	

 	 	 	 	 	
 	 	 	 	 	 	 	
 	 	 	

	

 	 	 	 	 	 	 	 	 	 	
	 	 	 	

 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	

	

4. Write 	code 	that	 can	read	and	write	text 	files.
5. Write 	code 	that	uses data from a file	 to	 instantiate objects.

Strings, ArrayLists, and Multi-dimensional arrays

Students 	should be able 	to:

1. Write 	code 	that	performs a range of manipulations on textual data, including
splitting a String according to a very simple expression (e.g., blank space), accessing
individual 	characters	and	accessing	substrings.

2. Create	 and	 use	 instances	 of	 a	built-in Java data type such as an ArrayList.
3. Use	Java-specific	 wrapper	 classes	 to manipulate primitive types as 	objects.
4. Compare and contrast arrays and a	Java-defined	 data type.
5. Write 	code 	that declares,	initializes,	and	uses multi-dimensional arrays, including

ragged	 arrays.
6. Given	a 	piece of code, draw a diagram	 representing the state of references in a

multi-dimensional array.

Interfaces

Students	should	be	able	to:

1. Differentiate	 between an interface and its implementation.
2. Force a class to implement abstract methods by having it implement an interface.
3. Use interfaces as variable types, parameter types, and 	return	value 	types.

Linked Lists

Students 	should be able 	to:

1. Compare and contrast lists and arrays based 	on	operation	 running times and
storage	 differences.

2. Write 	code 	that	creates, traverses, and manipulates a	linked 	list	data	structure.
3. Differentiate	 between an abstract data type	 and	 a data structure.
4. Implement Stack	and Queue	abstract	data	types 	using	a	linked 	list	data	structure.

Recursion

Students 	should be able 	to:

1. Create and implement recursive solutions to simple problems such	 as simple
mathematical calculations and linked 	list	traversals.	

2. Write a recursive solution to a problem	 with a helper function.
3. Identify	and 	explain	the base 	case and 	recursive 	step components of a recursive

algorithm.

	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	

	
 	 	 	 	 	 	

	 	 	 	
 	 	 	 	 	 	 	 	

	 	 	

Searching and Sorting

Students 	should be able 	to:

1. Describe why Computer Scientists care about the major “steps” in an algorithm	 over
raw measurements like CPU time.		

2. Express the complexity of a basic algorithm	 using big-O	notation.
3. Compare and contrast the 	data	 management requirements of linear versus binary

search.
4. Compare and contrast the running times of linear versus binary search using big-O	

notation.
5. Write code that implements linear and binary search on an array.
6. Describe sorting algorithms such	 as insertion, selection, merge, and quick sort in	

plain	English.
7. Compare and contrast iterative	and	recursive sorting algorithms,	including

insertion, selection, merge, and 	quick	sort.
8. Write code	that implements simple sorting algorithms such as insertion,	selection,	

and merge sort.

